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A pseudospectral method was developed for the solution cf the Navier-Stokes ecltiations for 
incompressible flows in the primitive-variable formulation. The method employs Chebyshev 
expansion methods in order to generate approximations to the momentum and pressure 
equtions and utilizes a well-known fractional time-step procedure in obtaining a solution to 
these equations. Results for the buoyancy-driven flow in a square enclosure with nonisother- 
mai vertical and insulated horizontal walls, at Rayleigh numbers in the range 
I.4 x lOami. x toe, are represented. The proposed method is easy to implement and can 
accurately reproduce the physics of the flow under consideration from transient to steady 
state. ‘t I984 Acadau!c Press. inc. 

INTRODUCTION 

Two dimensional laminar flows of incompressible Newtonian flows have been 
extensively studied by different numerical schemes applied to the following for- 
mulations of the Navier-Stokes equations: 

(i) Vorticity-stream function. 

(ii ) Vorticity-velocity [ 1 ]. 

(iii) Primitive variables. 

The vorticity-stream function and vorticity-velocity formulations share the dif- 
ficulties of appropriate implementation of the boundary conditions for vorticity. On 
the other hand, schemes proposed for the primitive-variable formulation have dif- 
ficulties with the determination of pressure in accordance with incompressibility. 
Pressure is determined either from a Poisson equation with Neumann boundary 
conditions or from the incompressibility contraint [2]. 

The application of spectral and pseudospectrzJ methods to fluid flow problems is 
still in its growth phase with a number of unresolved problems. Recent calculations 
by Orszag and Kells [3]. Morchoisne [4], Taylor and Murdock [.5] and Kleiser 
and Schumann [6] have aided considerably the advances in this area. 
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In a previous paper [8], pseudospectral methods were applied to the driven- 
cavity and pipe entrance flows, in the vorticity-stream function and vor- 
ticity-velocity formulations, respectively. Here: these methods are applied to the 
solution of the Navier-Stokes equations in the primitive variable formulation for a 
buoyancy-driven transient flow in a square enclosure. 

A PSEUDOSPECTRAL METHOD FOR 
THE TWO-DIMENSIONAL NAVIER~-STOKES EQUATIONS 

IN PRIMITIVE VARIABLES 

Before proceeding with the outline of the method. we briefly discuss the 
calculation of derivatives at the selected points x,, = cos[rr(n - l)/iV] 
(I <n < N+ 1) from Chebyshev expansions [7]. 

The first and second derivatives of a function f(x) with x E [ -1, I] can be 

where 

and 

with 

approximated as 

T= 

q=l,2 
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and G(r) being an (IV+ 1) * (N + 1 j matrix with elements 

(Cl = 2, c/) = I, p 2 2). 
We adopt Chorin’s splitting technique [I?], which is a first-order approximation 

in time, to formulate Poisson’s equation for the pressure and then use a second- 
order modified Euler scheme to obtain increased accuracy in time. 

Chorin’s method involves writing the momentum equations as 

where 

and S; is a forcing term. 
In the first step, assuming that u;! represents the discrete approximation to the 

solution at time &l, an auxiliary velocity vector ~1: can be explicitly found from 

In the second step, the flow held is corrected via the equations 

The discrete form of the Chebyshev expansion method for the second steps 
Eq. (6a), can be written as 
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By requiring that u;;’ and P;;’ satisfy continuity, and with no-slip boundary 
conditions, Eq. (6b) becomes 

With the matrix identifications 

and 

Equation (8) can be rearranged into an equation for the pressure 

with i = 2 ,..., NX and j = 2 ,..., NY, 
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On the boundaries, i= 1, NX+ 1 and j= 1, NY+ 1, the conditions &‘8~ =0 and 
&,I’& = 0, respectively, are approximated by 

and 

l3quation (1Oj with boundary conditions given by Eq. (llaj and (1 lb:) is the dis- 
crete form of the Poisson equation for the pressure and can be solved by the LIJ 
decomposition. Since the operator appearing in the equation for the pressure is 
linear it only needs to be inverted once. 

A modified Euler scheme is used for the flow field. This scheme involves the 
following steps: 

Step I 

Step II 

A BOUYANCY-DRIVEN FLOW PJ .4 SQUARE ENCLOSURE 

The method described above is applied to the problem of a buoyancy-driven flow 
in a square cavity with walls of length I which enclose a Newtonian incompressible 
fluid at temperature T0 initially. At time r = 0, the temperature of the left vertical 
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wall is raised to a level T, and is maintained at this level thereafter. In contrast to 
vertical wails which are thermally conducting, the horizontal walls are assumed to 
be completely insulated. When the temperature of the left vertical wall is raised, a 
buoyancy-driven flow commences. A measure of the strength of the buoyant forces 
as compared to the viscous forces is provided by the Rayleigh number which is 
defined as 

(g is the gravity acceleratiou /I the thermal expansion coefficient, v the kinematic 
viscosity and E the thermal diffusivity). 

Numerical solutions to this problem are usually confined to low Rayleigh num- 
bers. At high Rayleigh numbers a number of numerical methods are impaired by 
stability problems and exceedingly refined grid requirements. This is not the case 
for the Chebyshev expansion methods which allow accurate resolution of thin 
boundary layers associated with high Rayleigh numbers. 

When distances, velocities and time are made dimensionless by dividing them by 
f, 11/l and I?/v Ra, respectively, and a dimensionless temperature is defined as 
(T- TO)/( T, - To), the governing equations, with the Bousssinesq approximation, 

The initial and boundary conditions are given by 

t = 0; 0 <x < 1, 0 < J’< 1, z4=0=0; T=O 

t>o; .x=Oand 1, y=Oand 1, 14 = 11 = 0 

x = 0, T=l 

x= 1, T=O 

y=Oand 1, d7ydy=O 
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The discretized forms of Eq. (16) -( 18) together with the Poisson equation for the 
pressure are solved using the fractional time-step pseudospectral method described 
earlier. The boundary conditions of Eq. (1 gd) are approximated by 

which constitute the additionally required equations for r,,I and Ti-Ny+, . 
Numerical calculations were carried out for Pr = 7, the Prandtl number for 

water, and three different Rayleigh numbers: 1.4 x 104, 1.4 x 10’ and 1.4 x 10’. The 
time steps for each cast were initially chosen to be At = 1, 10 and 100 and were 
gradually increased to LIP = 3, 30 and 250, respectively. Throughout the com- 
putations isotherms were generated by Chebyshev polynomial interpolation [ 12]. 
According to this interpolation, the function at an intermediate point x is cakufatcd 
from the values of the function at the collocation points Zj, z’= I,..., ‘V + I, through 

f(x) = TT(x) a z T’(x) Tf(%) G331 

where Tr(x) = [T,,(x), TI(x) ,..., l’,,,, ,(x)1; 5 = [,i!,, Zz3 . . . . Z&,. ,]; a = [ul, u2 ,..., 
alV+ ,] and a,,, JJ= I,..., A’+ I, are the coefficients in the expansion 

N-t I 
f(h) = E apTpk,L n = 1 ,..., A7 + 1 . 

p=i 

b 

-1 

, 
:.o 

FIG. 1. (a) Flow direction vectors at time t/Ra=O.l5> with Ra= 1.4x lo’, Pr 7 7. (b) Isotherms az 
time f/Ra ~0.15, with Ra = 1.4 x 104, PC 7 7. 
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Flow patterns and isotherms for all three different cases are shown in Fig. l-5. 
The discussion below focuses on the development of the flow and temperature fields 
for Ra = 1.4 x 104 from transient to steady state. At t/Ra = 0.15, the flow (Fig. la) is 
initiated near the upper part of the left vertical wall. Changes in temperature 
(Fig. lb) also originate here. This region is constantly supplied with warm fluid 
while the lower part is continuously supplied with cool fluid and displacement of 
the boundary layer is suppressed. At time t/Ra = 0.707 (Figs. 2a, 2b), the flow and 
temperature fields near the top of the cavity reach steady state, while the bottom 
region still continues to develop. At time l/Ra = 2, both flow and temperature fields 
have reached steady state everywhere in the cavity. 

The fully developed flow and temperature fields for Ra = 1.4 x 105 at time 
t/Ra = 1.3 are shown in Figs. 3a, b, respectively. The computations demonstrate the 
existence of two distinct circulation cells, in agreement with previous investigations 
[9-l 11. At the higher Rayleigh number Ra = 1.4 x 106, thin boundary layers with 
steep changes in velocity and temperature are observed. The steady state flow and 
temperature fields shown in Figs. 4a, b compare will to Figs. 2a, b of Ref. [lo], 
respectively. 

An important quantity in this problem is the dimensionless heat transfer coef- 
ficient or Nusselt number detined by 

42.x I .Y = 0 

b 
r 

0.0 o.* 0.4 0.6 0,s I.0 

FIG. 2. (a) Flow direction vectors at time l/Ra = 0.707, with Ra = 1.4 x lOa, Pr = 7. (b) Isotherms at 
time t/Ra = 0.707, with Ra = 1.4 x 104, Pr = 7. 



SOLUTION OF 2D XAVIER-STOKES EQCATIOYS 369 

h 

FIG. 3. (a) Flow direction vectors at steady state, with Ra = 1.4 x 104. Pr = 7. (b) Isotherms at steady 
state. with Ra = 1.4 x 104, Pr = 7. 

(A is the heat transfer coefficient and k the thermal conductivity). An average 
Nusselt number can also delined as follows: 

, 
2.7 .-.. .’ 

- . ..-. 

FIG, 4. (a) Flow direction vectors at steady state, with Ra = 1.4 x 105, Pr = 7. (b) Isotherms at steady 
state. with Ra = 1.4 x lo’, Pr = 7, 
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b 

0.0 0.2 0.4 0.6 0.S I.0 

FIG. 5. (a) Flow direction vectors at steady state, with Ra = 1.4 x 106, Pr = 7. (b) Isotherms at steady 
state, with Ra = 1.4 x 106, Pr = 7. 

The integral in the above expression can be approximated from Chebyshev 
expansions [7] as 

where W,,i is a weighting factor. 
Average Nusselt numbers obtained in this work are compared to those from 

finite difference computations [ 111 in Table I. 

TABLE I 

Average Nusseh Numbers for Transient Natural 
Convection in a Square Cavity 

Ra Mesh NU 

lo4 [11] 65x65 2.250 

1.4 x 104 present 13 x 13 2.546 

10s [11] 65x65 4.513 

1.4 x 105 present 15x15 5.200 

106 [ll] 65x65 9.270 
1.4 x lo6 present 17 x 17 9.834 
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CONCLUSIONS 

A pseudospectral method which employs Chebyshev expansions and mikes a 
fractional time procedure was developed for the solution of the Navier-Stokes 
equations in their primitive variable formulation. This method achieves accurate 
determination of the pressure from a Poisson-type equation and allows for overal! 
enforcement of the compressibility constraint. 

The method was applied to the solution of the problem of the buoyancy-driven 
flow in a square cavity with nonisothermal vertical and insulating horizontal walk. 
It was shown to be effective in reproducing the development of the flow and tem- 
perature tields from transient to steady state and in resolving steep changes in the 
field variables within thin boundary layers. 
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